

Effects of Atmospheric Boundary Layer Turbulence on Single Heliostat Wind Load Coefficients: Comparison of Field Measurements with Wind Tunnel Experiments

<u>Matthew Emes</u>, Matthew Marano, Maziar Arjomandi The University of Adelaide, Australia

16 July 2024 • ASME ES2024 • Anaheim

Introduction – Heliostat Wind Loads

- Part-depth atmospheric boundary layer (ABL) in wind tunnel experiments limited in scaling both horizontal and vertical turbulence
- Dynamic loads based on streamwise wind speed and turbulence intensity can underestimate wind-induced displacements due to bending moments

Open farmland, grassy plains 1:6 scale heliostat model

Wind tunnel experiments – instrumentation

- *b* = 0.33 m, *c* = 0.53 m, *H* = 0.25 m
- JR3 six-axis load cell ±100 N F_x, F_y, ±200 N F_z, ±12 Nm M_x, M_y, M_z with ±0.25% accuracy
- 24 differential pressure sensors ±1" H2O (±248.84 Pa) with ±0.25% accuracy 530

• 1:114 part-depth ABL

conceptual design

M.

mass production
 heliostat field

Wind tunnel experiments – ABL profiles

• Mean velocity profile

$$U(z) = \frac{u_{\tau}}{k} \ln \frac{z}{z_0} + d$$
$$u_{\tau} = 0.48 \text{ m/s}, z_0 = 0.01 \text{ m}, d = 4.4$$
$$U(z) = U_{\infty} \left(\frac{z}{\delta}\right)^{\alpha}$$

 U_{∞} = 11.8 m/s, δ = 1.3 m, α = 0.35

• Turbulence intensity profiles

z₀ = 0.01 m (ESDU 85020)

• Turbulence length scales

z₀ = 0.01 m (ESDU 85020)

 α = 0.35 (ESDU 74031)

120 120 120 120 a = 0.35E85020 E74031 $u_{\tau} = 0.48$ 100 100 100 100 0.8 0.8 0.8 0.8 u w 80 80 80 80 0.6 0.6 0.6 0.6 z(m)60 60 60 60 z_{wt} 0.4 0.4 0.4 40 power 40 40 40 0.2 20 log 0.2 20 0.2 0.2 20 20 8 12 10 15 20 20 40 60 80 20 40 60 0 5 0 0 U(m/s) $I_{u,w}$ % $L_u^x(m)$ $L_w^x(m)$ Marano et al. (2024), Solar Energy 10^{0} 10 10 10 fS_{uu}/σ_u^2 fS_{ww} 1.6 m 3 m 10^{-2} 10-4 4.6 m 7.9 m 12 m WT -ESDU 85020 10^{-3} 10 , 10⁻² 10⁻¹ 10⁰ 10⁻¹ 10^{0} fz/Uf z/UEmes et al. (2024), Solar Energy (under review)

ents • i

integration • mass production

heliostat field

ABLRF – layout

- 14 ultrasonic anemometers
- 9 cup anemometers
- Open farmland

conceptual design mass production heliostat field integration components

ABLRF – instrumentation

• Campbell Scientific 81005A 3D ultrasonic anemometers

 \pm 0.05 m/s accuracy 0.01 m/s resolution

- \pm 2°C accuracy
- 0.01°C resolution
- Risø P2546A cup anemometers
- 48 Honeywell HSC series differential pressure sensors

±0.25% accuracy ±600 Pa measurement range

• ME Systeme K6D175 six-axis load cell

 \pm 0.5% accuracy \pm 10 kN F_x , F_y , \pm 20 kN F_z

 \pm 1 kNm M_{Hx} , M_{Hy} , \pm 2 kNm M_z

 Single industrial computer, 4G modem, four 315 W photovoltaic panels and six 200 Ah batteries

conceptual design •

components

integration • mass production

heliostat field

Heliostat Wind Load Analysis

- Drag force and azimuth moment coefficients from load cell (LC) are consistent
- Lift force and hinge moment coefficients from pressure sensors (PS) are consistent but more than 50% difference from LC at $\alpha \leq 30^{\circ}$
- Influence of L_w^{χ}/c greater than I_u and I_w

coefficient 5 5

force 1.5

0.5

0 15 30 45 60 75 90

Lift

2.5

2

Drag force c

0.5

0 15 30 45 60 75 90

Elevation angle (°)

coefficient

• Peak loads sufficiently estimated by a fitted Gaussian distribution

Elevation angle (°)

0.5

0.4

0.3

0.2

0 15 30

45 60 75

Elevation angle $(^{\circ})$

coefficient

moment

Hinge 7

Heliostat Pressure Analysis

Mean pressure distributions

 $\beta = 0^{\circ}$

α (°)

conceptual design

components • inte

integration •

Heliostat Wind Load Analysis

- Drag forces and azimuth moments overestimated in wind tunnel (WT) due to smaller $L_{\mu}^{\chi}/c \approx 1.3$ (10-15 ABLRF) and despite smaller I_{μ} 12% (26-36% ABLRF)
- Lift forces underestimated in wind tunnel (WT) due to smaller $L_w^{\chi}/c \approx 0.53$ (0.4-1.3) ABLRF) and smaller I_w 11% (12-16% ABLRF)

0.4

0.2

0.1 Hinge

0

0

15 30

components

45 60 75

Elevation angle (°

integration

0.4 coefficient

mom

1.8

1.6

coefficie 1.2

8.0 force

0 15 30 45 coefficient

force

Lift

90

60 75

Elevation angle $(^{\circ})$

0.5

conceptual design

0 15 30 45

Elevation angle (°)

60 75 90

mass production

heliostat field

Heliostat Pressure Analysis

 Mean pressure distributions $\beta = 120^{\circ}$

conceptual design

1.46

0

1.04

1

0

90

WT

components integration

0.05

0.00

0

mass production

ABL Turbulence Analysis

Length scale L_w^x (m)

0.2

20

ABL Wind Analysis

Key Takeaways

- Single heliostat wind loads are sensitive to ABL turbulence intensity and integral length scales at elevation axis height
 - Drag forces at $\alpha \ge 60^{\circ}$ overestimated in wind tunnel experiments ($L_u^{\chi}/c \approx 1$) compared to field measurements ($L_u^{\chi}/c \approx 10$)
 - Lift forces at $\alpha \leq 30^{\circ}$ underestimated in wind tunnel experiments ($L_w^{\chi}/c \approx 0.5$) compared to field measurements ($L_w^{\chi}/c \approx 1$)
 - Wind loads that are more sensitive to the vertical component of velocity fluctuations (i.e. lift forces and hinge moments) show a greater dependence on atmospheric instabilities, such as amplified energy of turbulence in the vertical direction during the late afternoon and evening transition
 - Azimuth moments at different β show general agreement between wind tunnel and field measurements
 - All load coefficients at ABLRF show a small to negligible variation with changes in wind speed at heliostat elevation axis height

Conclusions and Future Work

- Verification of single heliostat wind load coefficients of a 1:6 scale model in wind tunnel (WT) with field measurements
- Turbulence intensities and length scales of horizontal velocity (I_u, L_u^x) influence peak drag forces and azimuth moments, whereas vertical velocity component (I_u, L_u^x) influences peak lift forces and hinge moments
- Gaussian distribution is generally sufficient for frontal wind flow ($\beta \approx 0^{\circ}, 180$) and near-isotropic turbulence ($L_u^x/L_w^x=2$) in wind tunnel but can underestimate peak loads in field measurements
- Scatter and inconsistency in lift forces and hinge moments from load cell data, whereas pressure data at ABLRF is more consistent with WT data
- There is a need to unify wind load coefficient derivations using load cells and pressure sensors with shape factors applied in design standards

Acknowledgements

- Heliostat Consortium (HelioCon) US Department of Energy (DOE) Solar Energy Technologies Office Award DE-EE00038488/38714
- Australian Solar Thermal Research Institute (ASTRI)

Australian Renewable Energy Agency (ARENA) Grant 1-SRI002

• Conditions over the Landscape (COtL)

